

Kinetic Modeling and Applications of Total-Body PET Technology

Guobao Wang, PhD Associate Professor, Department of Radiology University of California Davis Health

Total-Body PET Conference 2021-2022, Edinburgh | September 22, 2021

Disclosure

• University of California Davis has a revenue sharing agreement and a research agreement with United Imaging Healthcare (UIH)

Total-Body PET

(A) Conventional PET scanner (Axial FOV: 15-30 cm) (B) EXPLORER (Axial FOV: 194 cm)

Total-body PET provides unprecedented photon detection sensitivity and enables simultaneous imaging of the entire body

Cherry et al. JNM 2018; Badawi et al. JNM 2019

Long Axial FOV PET Scanners

UIH uEXPLORER (installed at UC Davis in 2019)

Axial FOV: 194 cm

Spencer *et al.* JNM 2021

PennPET EXPLORER

Axial FOV: 112 cm (extended)

Karp et al. JNM 2020

Siemens Biograph Vision Quadra

Axial FOV: 106 cm

Alberts et al. EJNMMI 2021

Use of Total-Body PET for Static Imaging

- Image better
 - \sim 6-fold gain in SNR
- Image faster
 - up to 1/40th time
- Image longer/later
 - \sim 5 more half-lives
- Image with low dose

up to 1/40th dose

Limitation of Static Imaging

Semi-quantification using standardized uptake value (SUV)

SUV = Radiotracer Concentration Injected Dose / Body Weight

- Being specific to a time point
- Affected by body habitus and dietary preparation
- Mixing signal in vascular space and cellular space

Simultaneous Dynamic Imaging of the Entire Body

Shown are MIP (maximum intensity projection) images.

Capturing the Full Time Course of Tracer Activity in All Organs

8

Quantification Using Tracer Kinetic Modeling

Kinetic Parametric Estimation by Time Activity Curve (TAC) Fitting

• Macro kinetic parameters can be calculated, e.g., for FDG:

Net influx rate
$$K_i = \frac{K_1 k_3}{k_2 + k_3}$$
; Initial volume of distribution $V_0 = \frac{K_1 k_2}{(k_2 + k_3)^2}$

• Voxel-wise implementation provides parametric imaging

Benefits of Total-Body PET for Kinetic Modeling

- Improved sensitivity
 - makes it more robust to estimate kinetic parameters
 - enables dynamic PET imaging with higher temporal resolution (Badawi *et al* JNM 2019; Zhang *et al* PNAS 2021)
- Total-body coverage
 - covers both major blood pools and all organs simultaneously
 - allows full compartmental modeling for all organs (and metastases)

⇒ Probing physiology

- Good image-derived input function
 - Total-body quantification of micro kinetic parameters

Challenges of Total-Body Kinetic Modeling and Parametric Imaging

12

Time Delay of the Blood Input Function

lida et al. 1986, 1988, 2000; E. Meyer et al. 1989; Lammertsma et al. 1990; Feng et al. 2020

Time-Delay Correction on Total-Body Parametric Imaging

Time-Delay Correction (TDC) Also Impacts on FDG K_i

Impact of Time Delay Correction Correlates with Blood Volume Fraction

Results from 19 lesions from 5 patients with metastatic genitourinary cancer

Total-Body Model Selection

- Conventionally a fixed model is commonly used in organ-specific parametric imaging, e.g.,
 - Brain
 - Myocardium
- Total-body parametric imaging
 - Many different organs
 - Each may follow a different compartmental model

Example of Total-Body Model Selection

2Ti $C_p(t)$ K_1 $C_f(t)$ $C_m(t)$

Irreversible two-tissue (2Ti) model

Model selection by Akaike information criterion (AIC)

2Ti

1T

OT

Impact of Model Selection on K_i Imaging of Lesions

Impact of Model Selection on Myocardial K_i Imaging

No model selection

Example of Total-Body PET Multiparametric Imaging in Metastatic Cancer

Potential Benefits of Total-Body Multiparametric Imaging

1. Improved lesion contrast

2. Exploring micro kinetic parameters (e.g., K_1) for multiparametric imaging

3. Multiorgan quantification in systemic disease

Benefit 1: Parametric Image of K_i Can Improve Lesion Contrast

• FDG *K*_i can clean background signal in the liver and blood pool

Results from 19 lesions from 5 patients with metastatic genitourinary cancer

Example of Liver Lesions

Example of Abdominal Lesions

para-aortic lesion

Benefit 2: Exploring Micro-kinetic Parameters for Multiparametric Imaging

- SUV and K_i characterize glucose metabolism
- FDG delivery rate K₁ generally reflects a mix of blood flow and glucose transport

- Many potential applications of FDG K_1 :
 - Serve as a surrogate of blood flow
 - Independent imaging biomarker
 - Create lesion contrast

Cancer: FDG K₁ May Highly Correlate with Tumor Blood Flow

• Due to generally high extraction fraction of FDG in tumors

Enabling single-tracer (FDG) evaluation of flow-metabolism mismatch

Mullani et al, 2008; Zeng et al 2004

Heart: Measuring Myocardial Blood Flow (MBF) Using FDG K₁

 FDG may have a very similar first-pass extraction fraction as ⁸²Rb-chloride in myocardium

 Correlation of FDG-derived MBF with Rb MBF

Zuo et. al., Phys Med Biol 2021

Liver: FDG K₁ May Be a Potential Biomarker of Liver Inflammation

 Decreased liver FDG K₁ is associated with increased liver inflammation in nonalcoholic fatty liver disease

Brain/Skull: FDG K₁ Has Potential to Better Detect Tumors

Wang et al. unpublished EXPLORER data

Benefit 3: Enabling Multi-Organ Evaluation in Systemic Disease

• Simultaneous evaluation of myocardium in cancer patients?

 Problem: 30-40% of standard oncological FDG-PET scans do not show visible myocardium

SUV (60 min. p.i.)

• Parametric imaging can help

Simultaneous Visualization of Myocardium by Parametric Imaging

(g/mL) 8

(g/mL)

8

(g/min/mL)

0.015

Example В

А

Allowing Evaluation of Perfusion-Metabolism Coupling/Mismatch

K_i (metabolism) (g/min/mL) 0.015 (g/min/mL) 0.015

Example A

Example B

K₁ (perfusion/transport)

(g/min/mL)

1.5

Putting All Puzzles Together

Single-tracer (¹⁸F-FDG) Multiorgan Multiparametric Evaluation by EXPLORER

Multi Organs

- Myocardium
- Liver
- Lung
- Brain
- Bone marrow
- Spleen
- Kidney ...

Multiparametric Imaging

- Glucose metabolism
- Glucose transport / perfusion
- and potentially more

Example of Ongoing Studies: Total-Body Evaluation of Response to Cancer Immunotherapy

Glucose metabolism

Glucose transport/perfusion

- Response of tumor
- Response of immune organs
 - Bone marrow
 - Spleen
- Drug effects
 - Heart: cardiotoxicity
 - Brain: cognitive impairment

Collaboration with L Nardo MD, RD Badawi PhD, M Parikh MD, R Verma MD

Example of Ongoing Studies: Organ Crosstalk in Nonalcoholic Steatohepatitis (NASH)

Example of Ongoing Studies: Low-Dose Total-Body PET of Rheumatoid Arthritis

Example of Ongoing Studies: Metabolic Imaging of COVID-19 Recovery

https://medicine.wustl.edu/

FDG transport K₁ FDG metabolism K_i

5 weeks after COVID diagnosis

Acknowledgements

Simon R Cherry Ramsey D. Badawi Jinyi Qi **Terry Jones** Abhijit Chaudhari **Ben Spencer** Xuezhu Zhang Yang Zuo Elizabeth Li Yiran Wang

Lorenzo Nardo Yasser Abdelhafez Souvik Sarkar Javier Lopez Chong-xian Pan Primo N. Lara Mamta Parikh Rashimi Verma UC Davis EXPLORER Molecular Imaging Tech Team

All UC Davis MiPET Group members