Dynamic Liver PET:
Kinetic Modeling and Clinical Translation for NASH Imaging

Guobao Wang, Ph.D.
University of California Davis Health

This work is supported by NIH R01 DK124803
Disclosure

• University of California Davis has a revenue sharing agreement and a research agreement with United Imaging Healthcare (UIH)
Nonalcoholic Steatohepatitis (NASH)

• 5-10% of nonalcoholic fatty liver disease patients develop NASH

• Diagnostic hallmark of NASH is **liver inflammation** in the setting of steatosis
Disease Characteristics

<table>
<thead>
<tr>
<th>Disease Characteristics</th>
<th>Clinical Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver Steatosis</td>
<td>Magnetic Resonance Proton Density Fat Fraction (MR-PDFF) or Computed Tomography (CT)</td>
</tr>
<tr>
<td>Liver Inflammation</td>
<td>?</td>
</tr>
<tr>
<td>Liver Fibrosis</td>
<td>Magnetic Resonance Elastography (MRE), Ultrasound Elastography</td>
</tr>
</tbody>
</table>
Development and Translation of PET Methods for NASH Imaging

- A **team** of MDs and PhDs at UC Davis Medical Center

- Sarkar S, MD
- Wang GB, PhD
- Corwin M, MD
- Badadwi RD, PhD
- Matsukuma K, MD
- Chen S, PhD
- Lyo V, MD
- Spencer BA, PhD
- Medici V, MD
- Tran Q, PhD
Standard 18F-FDG PET for Evaluating Liver Inflammation?

- Liver is the primary organ to store and regulate glucose

- 18F-FDG PET is mainly used for assessing glucose metabolism

- Standard FDG PET measure did not correlate with liver inflammation

Wang et al. PMB 2018; Sarkar et al. AJR 2019
Dynamic 18F-FDG PET Imaging

- Dynamic PET monitors both spatial and temporal change of tracer uptake, creating a functional “movie”
Kinetic Quantification by Time Activity Curve (TAC) Fitting

- For FDG, conventional focus is on glucose metabolism

\[
K_i = \frac{K_1 k_3}{k_2 + k_3}
\]

- We call attention to glucose transport rates (e.g., \(K_1\)) as well
A Glucose Transport Hypothesis for Liver Inflammation

• Glucose is transported by glucose transporters (GLUTs)

• Chronic liver inflammation involves programmed cell deaths and may associate with low GLUTs expression

• Our hypothesis:

 liver inflammation is associated with decreased glucose transport rate (measured by FDG K_1)
Challenge with Kinetic Quantification in the Liver

- Liver has two blood supplies: hepatic artery and portal vein
- Dual-blood input function is required for accurate kinetic modeling

S. Keiding, JNM 2012; Monk et al, JNM 2001

http://www.fragmenthealth.com/
Dual-blood Input Function (DBIF)

• Flow-weighted DBIF model

\[C_p(t) = f_A C_A(t) + f_{PV} C_{PV}(t) \]

• Typical weights measured with blood sampling in foxhounds
 – \(f_A : 20\% \)
 – \(f_{PV} : 80\% \)

• However, portal vein input can not be measured accurately from PET images

Monk et al, JNM 2001
Population-based DBIF: The Mathematical Model

- Describe $C_{PV}(t)$ as a convolutional model of $C_A(t)$

\[C_{PV}(t) = C_A(t) \otimes h(t; \theta) \]

- $h(t)$ is a dispersion function, accounting for the effect of tracer passing through the gastrointestinal tract, e.g.,

\[h(t) = \kappa e^{-\kappa a t} \]

Brix et al, JNM 2001; Chen et al, 2008;
Population-based DBIF: Determination from Animal Data

- More examples of the dispersion model $h(t)$:

 - Brix et al 2001:

 $$h(t) = t^{P_0}(P_1 e^{-P_2t} + P_3 e^{-P_4t})$$

 - Winterdahl et al 2010:

 $$h(t) = \frac{\beta}{(t + \beta)^2}$$

- Model parameters are determined from animal studies with blood sampling and then applied to human studies

Brix et al, JNM 2001; Winterdahl et al, EJNMMI 2010;
Optimization-derived DBIF: General Concept

- No blood sampling is required
- Directly applicable to human data

Unknown parameters are jointly estimated by TAC fitting using numerical optimization

\[
C_D(t) = f_A C_A(t) + (1 - f_A) C_{PV}(t)
\]

\[
C_A(t)
\]

\[
C_{PV}(t)
\]

Tissue TAC

Artery input

Portal vein input

Chen et al. TNS 2008; Kudomi et al. EJNMMI 2009; Feng et al. TRPMS 2020;
Optimization-derived DBIF: Model for FDG

- All model parameters are structurally identifiable, though subject to local solutions
- Estimates of K_1 and influx rate K_i are stable (low bias and variance)

Differential Equations:

$$\frac{d}{dt} \begin{bmatrix} C_f(t) \\ C_m(t) \\ C_{PV}(t) \end{bmatrix} = \begin{bmatrix} -(k_2 + k_3) & k_4 & K_1(1 - f_A) \\ k_3 & -k_4 & 0 \\ 0 & 0 & -k_a \end{bmatrix} \begin{bmatrix} C_f(t) \\ C_m(t) \\ C_{PV}(t) \end{bmatrix} + \begin{bmatrix} K_1f_A \\ 0 \\ k_a \end{bmatrix} C_A(t)$$

Wang et al. PMB 2018; Zuo et al PMB 2019;
Impact of Liver DBIF on Parametric Imaging

Parametric images of FDG K_1

(a) w/o DBIF (b) with DBIF

ml/min/mL

2.0

0.0
Demonstration of Liver Inflammation and FDG K_1

A. Inflammation Grade: 1
Liver K_1 = 1.29

B. Inflammation Grade: 3
Liver K_1 = 0.83

C. Inflammation Grade: 5
Liver K_1 = 0.60

Sarkar et al. AJR 2019
Liver Inflammation Was Associated with Decreased Glucose Transport

Liver glucose transport (K_1)

- Low: 1.2
- Medium: 1.0
- High: 0.8

K_1: 0.01

Glucose metabolism (K_i)

- Low: 0.014
- Medium: 0.016
- High: 0.018

K_i: all p values > 0.9

Sarkar et al. AJR 2019; CGH 2021
Can the Scan Duration Be Shortened?

- A 15-minute scan has a <5% difference in liver FDG-K_1 compared to the 60-min reference
Feasibility of a 15-minute Scan Protocol

Correlation of liver FDG K_1 in 22 patients

$R = 0.9903$
$p = 1.3e-18$
What is FDG K_1 in the Liver?

- FDG K_1 represents the overall delivery rate of FDG from blood to liver tissue cells.

- It is a mix of:
 - Blood flow
 - Glucose-specific transport (from blood to the interstitial space and then to the intracellular space)
Opportunities Open Up by High-performance Scanners

• Recent sensitivity **boost** on commercial PET scanners

 4-40x

• High-temporal resolution (HTR, e.g., 1-2s/frame) may become feasible for dynamic PET imaging

• HTR potentially enables separation of the transport processes to measure

 blood flow and *tracer-specific transport* rates

from a single-tracer dynamic scan
Acknowledgments

NIH funding: R01 DK124803

Dr. Siqi Li
Dr. Ben Spencer
Dr. Quyen Tran
Dr. Yang Zuo

Alex Kuo
Elizabeth Li
Peter Liu
Sean Romeo
Yiran Wang

Dr. Ramsey D. Badawi
Dr. Shuai Chen
Dr. Simon R. Cherry
Dr. Jinyi Qi

Dr. Michael Corwin
Dr. Victoria Lyo
Dr. Karen Matsukuma
Dr. Valentina Medici
Dr. Kristin Olson
Dr. Souvik Sarkar

Denise Claude
Heather Hunt
Mike Nguyen
Michael Rusnak