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Synopsis

The uEXPLORER total-body PET/CT system provides a very high level of detection sensitivity 

and simultaneous coverage of the entire body for dynamic imaging for quantification of tracer 

kinetics. This paper describes the fundamentals and potential benefits of total-body kinetic 

modeling and parametric imaging focusing on the noninvasive derivation of blood input function, 

multiparametric imaging, and high-temporal resolution kinetic modeling. Along with its attractive 

properties, total-body kinetic modeling also brings significant challenges, such as the large scale of 

total-body dynamic PET data, the need for organ and tissue appropriate input functions and kinetic 

models, and total-body motion correction. These challenges, and the opportunities using deep 

learning, are discussed.
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1. Introduction

Positron emission tomography (PET) is a sensitive molecular imaging method that uses 

radiolabeled tracers to monitor the biological and physiological function of the scanned 

subject in vivo1. PET is commonly used in the clinic to acquire static images of radioactivity 

distribution at a specific time interval (e.g., 60 minutes) post radiotracer injection. The 

standardized uptake value (SUV) is provided as a semi-quantitative measure of tracer uptake 

which, however, is affected by many factors, including body habitus, dietary preparation, 
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and scan timing. Dynamic PET imaging can also be performed by taking multiple 

consecutive frames, typically starting at the time of injection. The acquired four-dimensional 

(4D: 3D space and 1D time) data from dynamic PET may reflect a broad spectrum of 

physiological and metabolic information, including blood flow, tracer delivery, transport, 

and metabolism. Dynamic PET data are commonly analyzed using compartmental modeling 

to quantify physiological parameters in a region of interest (ROI) or at the image voxel level 

(i.e., parametric imaging)2,3.

Although dynamic PET with tracer kinetic modeling has many potential advantages over 

static PET imaging, its widespread use and clinical implementation have been hampered by 

several factors such as high noise, the need of blood input function, long scan time, etc4. 

Dynamic PET also has been largely restricted to single-organ imaging, e.g., for brain and 

heart, due to the short axial field-of-view (AFOV) of conventional PET scanners (usually 

~20 cm)5. Implementation of whole-body dynamic imaging has become feasible on 

conventional PET scanners6-8, but it is challenging to achieve high temporal resolution, and 

the data is sparse in the temporal domain due to the need to move the subject relative to the 

scanner to image different parts of the body. The recent advent of the uEXPLORER total-

body PET system (and other long AFOV scanners that cover all or most of the vital 

organs9,10) provides unprecedented levels of detection sensitivity and simultaneous coverage 

of the entire body for dynamic imaging5,11,12. The total-body kinetic modeling and 

parametric imaging enabled by this system may have potential in both molecular imaging 

research and clinical applications13-16. Meanwhile, challenging technical problems co-exist 

with the opportunities given the large scale of total-body dynamic data sizes and the need for 

consideration of physiological heterogeneities in different organs and of the presence of 

motion that occurs throughout the dynamic series of images. This paper provides a brief 

introduction of total-body dynamic PET imaging and kinetic modeling (section 2.1-2.3), 

describes its potential benefits and limitations (section 2.4-2.6), and discusses potential 

directions to address the challenging problems using deep learning (section 3). Image 

examples shown in this paper are mainly from the widely used tracer 18F-

fluorodeoxyglucose (FDG), but the concept is also applicable to most other radiotracers.

2. Total-body dynamic PET and its potential for kinetic modeling

2.1. Basis of dynamic PET and kinetic modeling

Figure 1 shows the flowchart for dynamic PET imaging and kinetic modeling. An example 

of tracer kinetic modeling with compartmental models17 for metabolic imaging is given in 

Figure 2 for 18F-FDG. The FDG net influx rate Ki =
K1k3

k2 + k3
 is directly proportional to the 

metabolic rate of glucose and is a macro parameter of interest 2,3. Compartmental modeling 

usually needs nonlinear curve fitting to estimate the kinetic parameters, which is 

computationally expensive and also sensitive to noise. As an alternative to compartmental 

modeling, the Patlak model18 is a linear graphical method that can approximate Ki using the 

slope of a graphical plot of the blood input function and tissue time-activity curve (TAC). It 

has the advantages of computational efficiency and noise robustness for parametric imaging. 

Examples of compartmental models and graphical methods for modeling ligand-receptor 
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kinetics are reviewed by Watabe et al.19. The potential of kinetic modeling and parametric 

imaging has been demonstrated in both research studies and clinical diagnosis20,21.

One challenge of kinetic modeling is to obtain the input function Cp(t) . Conventionally it 

would be obtained using arterial blood sampling which, however, is invasive. To reduce 

invasiveness, population-based input functions (PBIF) can be used in combination with one 

or two blood samples22. As the spatial resolution of PET scanners has improved over time, it 

has become feasible to non-invasively derive a blood input function from dynamic PET 

images if a large blood region (e.g., left ventricle or aorta) is available in the scanner FOV. 

This type of input function is usually referred to as the image-derived input function (IDIF).

2.2. Limitations of dynamic whole-body imaging on conventional PET scanners

Conventional PET scanners have a short AFOV, typically 15-30 cm, as Figure 3(A) shows. 

To acquire a set of whole-body dynamic images in sequence, the scanner must use multiple 

bed positions and multiple passes8,23, as shown in Figure 3(B). As a result, early-phase data 

that has unique information linked to blood flow and blood volume is only available for the 

organs imaged in the first bed position for conventional scanners but is missing for most of 

the body. There are also large temporal gaps in dynamic frames at any given scanned 

location. Furthermore, due to the isotropic nature of the annihilation photon emission, the 

detection sensitivity within the short AFOV is low11, leading to a high noise level in 

dynamic images.

The acquisition of an input function Cp(t) for whole-body kinetic modeling with short 

AFOV PET scanners is another challenge. If measuring of the IDIF is desired, the location 

of the first bed position may need to be shifted from the main organ of interest (e.g. the 

brain) to a location covering the aorta, losing valuable early information in the organ of 

interest. This means some (complex) kinetic model models (e.g. two-tissue compartment 

model) can no longer be used for analyzing the tissue of interest.

2.3 Total-body dynamic imaging on uEXPLORER

The development of the uEXPLORER total-body PET/CT system12, with a 194 cm AFOV, 

is an important step in addressing some limitations of conventional PET scanners, as shown 

in Figure 4. It allows simultaneous dynamic imaging of the entire body. This eliminates the 

large temporal gaps in conventional dynamic whole-body imaging. The total-body axial 

coverage also increases the scanner detection sensitivity by 20-40 fold and the image signal-

to-noise ratio by 5-6 fold5 for imaging the entire body. In addition, the high sensitivity 

allows dynamic imaging with much higher temporal resolution (HTR), such as 1 s per time 

frame13 or even 0.1 s per frame24 compared to 10-40 s per frame in traditional protocols, 

which may be used to explore novel clinical applications.

2.4 Potential benefits of total-body dynamic PET for kinetic modeling: examples

2.4.1 Noninvasive IDIF—Total-body dynamic images acquired from the uEXPLORER 

system bring several potential benefits for non-invasive IDIF determination. As compared to 

dynamic whole-body imaging on conventional PET scanners, the total-body coverage of 

uEXPLORER allows an IDIF to be extracted from major blood pools in the body without 

Wang et al. Page 3

PET Clin. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compromising the temporal resolution of imaging any other organs. This is advantageous 

even for single-organ dynamic PET imaging. For example, for dynamic brain imaging with 

conventional PET, the carotid arteries are the largest available blood pool present in the FOV 

from which to derive an IDIF; with a diameter of 5-6 mm, the carotids have little signal and 

suffer from severe partial volume effects. Total-body dynamic PET overcomes this problem 

by providing a low-noise IDIF from the large blood pool present in the FOV such as the left 

ventricle or ascending/descending aorta. Figure 5 shows an example of brain parametric 

imaging from a healthy subject scan on the uEXPLORER, where carotid partial volume 

effects result in increased Ki estimates.

The ability to acquire low-noise input functions, non-invasively, and measured using the 

same device as the tissue TACs, aids in unbiased kinetic parameter estimation. While most 

organs are supplied by a single blood input from the arterial system, some organs have dual 

blood supplies. The liver, for example, is supplied by both the hepatic artery and the portal 

vein. However, IDIF extraction from the portal vein is difficult with conventional dynamic 

PET imaging, due to the combined effect of limited spatial resolution, the small size of the 

portal vein (about 10 mm), and high noise levels present in a small ROI. This challenge can 

be reduced by total-body dynamic PET imaging on uEXPLORER which with much higher 

sensitivity and higher spatial resolution will allow better estimation of the IDIF from such 

vessels.

2.4.2 Multi-parametric imaging—Limited by the short AFOV, conventional PET 

scanners cannot simultaneously capture total-body kinetic signals, especially in the early 

phase of radiotracer bolus distribution. Thus, parametric imaging has usually been limited to 

the linear Patlak plot method in dynamic whole-body PET studies with conventional 

scanners. This method provides a slope image for the macro kinetic parameter Ki and an 

intercept image related to a combination of fractional blood volume vb and volume of 

distribution. However, the full potential of compartmental modeling that allows 

quantification of micro kinetic parameters (e.g., the tracer delivery rate K1 and fractional 

blood volume vb) are difficult to explore with such systems. For example, a whole-body Ki 

image can be obtained with conventional scanners, whereas a whole-body K1 image cannot.

Total-body dynamic imaging with the uEXPLORER system has the potential to address this 

shortcoming and enable high-quality total-body kinetic modeling and parametric imaging of 

micro kinetic parameters. Figure 6 shows an example for parametric imaging of FDG uptake 

rate Ki fractional blood volume vb, and FDG delivery rate K1 from a uEXPLORER scan16.

Among the different kinetic parameters measured, the tracer delivery rate K1 is of particular 

clinical interest due to its connection to blood flow25. This parameter is different from the 

influx rate Ki and hence can provide complementary information, e.g., potentially for 

simultaneous evaluation of perfusion-metabolism mismatch using FDG for myocardial 

viability26. Parametric imaging of the relative delivery rate R1 (ratio of K1 between a tissue 

region and a reference region) of tau tracers and beta amyloid tracers is also being explored 

as a surrogate of cerebral blood flow to simultaneously assess both blood flow and 

misfolded protein changes in neurodegenerative disease using a single tracer. Readers are 
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referred to the section III.D of a recent review article on parametric imaging for more 

details4.

Total-body parametric imaging of the fractional blood volume vb may also add useful 

physiological and pathological information. For example, chronic obstructive pulmonary 

disease (COPD) changes lung blood volume27. vb may also reveal the local blood supply 

and microenvironment of a tumor, thus may be helpful to improve tumor diagnosis and 

characterization28.

2.4.3 High-temporal resolution kinetic modeling—The ability of uEXPLORER for 

HTR imaging (e.g., 1 s per frame) allows not only better temporal sampling of the blood 

input function, but also more accurate modeling of fast tracer kinetics. For example, after 

bolus injection, radiotracer signal in the lungs is supplied by the pulmonary artery and 

bronchial artery. However, differentiation of the contributions from the two blood supplies is 

challenging if the temporal resolution of dynamic imaging is insufficient. With total-body 

dynamic PET, it becomes feasible to measure lung TACs with high temporal resolution and 

derive the bronchial arterial input function and pulmonary arterial input function from the 

left ventricle and right ventricle, respectively. Our preliminary results have demonstrated 

HTR imaging has a significant effect on the quantification of 18F-FDG K1 and vb in the 

lungs29.

The second example is the multiphase Patlak plot. Patlak plots derived with standard 

temporal resolution commonly show a single late-time linear phase. With HTR imaging, 

preliminary results from Zuo et al.30 demonstrated two additional approximately linear 

phases: one at around 20-30s (first-pass) and the other at around 1-2 minutes (early-time) 

(Figure 7). Total-body parametric images of the slopes of the first-pass, early-time and 

standard late-time linear phases also demonstrate different spatial patterns. It is worth noting 

that Patlak plot has been used with high temporal resolution in dynamic contrast-enhanced 

magnetic resonance imaging for assessing blood brain barrier permeability31. Thus, we 

postulated that the first-pass and early-time Patlak slopes may be related to blood flow and 

tracer permeability, though the precise meaning and physiological basis for these earlier 

linear phases remain to be determined.

Another example of HTR kinetic modeling is for the separation of blood flow and tracer-

specific transport from the overall tracer delivery rate K1, e.g., through time-varying kinetic 

modeling that is currently under development32,33. For 18F-FDG, HTR kinetic modeling 

may make it possible to derive blood flow, glucose transport, and glucose metabolism 

simultaneously from a single dynamic scan.

2.4.4 Dual-tracer dynamic PET imaging—Single-scan dual-tracer (or multi-tracer) 

PET imaging has attracted a lot of interest over the past decades (see the review paper from 

Kadrmas and Hoffman34). To recover separate images of each tracer from the same scan, 

dynamic imaging and kinetic modeling can be used to separate the two tracer signals from 

each other. The robustness of single-scan dual-tracer methods has typically been limited by 

data noise. The increased sensitivity of total-body PET scanners is offering new 

opportunities to make this framework more robust and feasible for clinical investigation. The 

Wang et al. Page 5

PET Clin. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



total-body coverage will also allow simultaneous dual-tracer dynamic imaging of the entire 

body.

2.5 Potential clinical impact

Compared to the semi-quantitative SUV used routinely in the clinic today, total-body kinetic 

modeling on the uEXPLORER opens up the window for studying systemic diseases 

quantitatively and in a multi-parametric fashion using a single radiotracer. One obvious 

example is studying the heterogeneity of metastatic tumor characteristics, both before and 

after treatment. Total-body PET allows for kinetic data to be acquired simultaneously for all 

metastatic lesions in the body, and multi-parametric imaging may provide a sensitive assay 

for assessing the response or likely response of each lesion to treatment. For example, 

dysregulated cellular metabolism and angiogenesis are both hallmarks of cancer35. High-

quality multi-parametric imaging of FDG Ki (reflecting metabolism) and K1 (reflecting 

perfusion and glucose transport) has the potential to provide complementary information of 

tumor metabolism and angiogenesis for more accurate tumor characterization for response 

assessment.

Similar approaches could be used to quantify inflammatory or infection burden across the 

entire body with appropriate radiotracers. For example, in arthritis, total-body dynamic 

imaging allows all the joints of the body to be assessed simultaneously with kinetic 

modeling approaches. Finally, absolute quantification of perfusion and blood volume across 

the entire body would likely have a broad clinical impact, especially if scans can be 

performed quickly and at relatively low radiation dose. Clinical applications would include a 

range of cardiovascular diseases (for example, peripheral arterial disease) where the vascular 

health of the entire body can be assessed and quantified. Whole-body parametric imaging of 

rapid physiological processes and tracer distributions is particularly challenging on 

conventional short axial field of scanners as there simply is insufficient time to move the bed 

and collect data across the entire body.

2.6 Limitations of total-body dynamic PET

While total-body dynamic PET brings several potential benefits, some limitations of 

conventional dynamic PET imaging still remain. For example, parametric imaging of FDG 

Ki usually requires a one-hour long scan, which is one of the main hurdles that limit the 

widespread adoption of dynamic FDG-PET in clinics. This hurdle remains with total-body 

dynamic PET imaging. Many radiotracers have the issue of being metabolized during the 

imaging time. Metabolite correction is needed for determining the true parent plasma input 

function36, which remains a challenge for total-body kinetic modeling, though new 

noninvasive methods are being explored. Another limitation of total-body dynamic PET 

imaging is the limited availability of total-body PET systems. At the time of writing there 

are approximately 10 installations of total-body or long (> 1 meter) AFOV scanner 

worldwide. This implies that initially total-body dynamic PET studies will be only 

conducted in a small number of institutions, although the number of these scanners is 

expected to increase quite quickly in the coming years.
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Total-body kinetic modeling also brings new significant challenges, including the large scale 

of total-body dynamic datasets and wide physiological heterogeneity in different organs that 

should be accounted for by using organ and tissue appropriate models. Total-body 

parametric imaging is further complicated by non-rigid subject motion that occurs 

throughout the dynamic acquisition. Kinetic parameter estimation with compartmental 

modeling is also highly nonlinear, suffers from local minima, and is sensitive to noise, 

resulting in a challenging task for conventional ROI-based modeling that is exacerbated 

when performing parametric imaging where models are applied on a voxel-by-voxel basis. 

In addition, the computational efficiency of nonlinear parametric imaging needs to be further 

improved for practical use because up to 10 million image voxels per acquisition are 

typically processed in total-body parametric imaging.

3. Opportunities using deep learning for total-body kinetic modeling

Deep learning has attracted broad attention for its huge potential in almost every field, 

including PET37,38. One major advantage of deep learning is its ability for end-to-end 

training of a mapping from problem inputs to answers. Once the model is trained, the 

prediction is fast. In this section, we discuss a few examples for potential deep learning-

based solutions to address the specific challenges in total-body kinetic modeling.

3.1 Voxel-wise corrections for blood input function

In total-body dynamic PET, the IDIF is usually extracted from an ROI selected within a 

large central blood pool. For a peripheral tissue region that is far from the blood ROI, the 

arrival time of the radiotracer is delayed compared to the start time of the extracted blood 

input function. Thus, this time delay of the input function needs to be corrected to achieve 

accurate kinetic quantification. Time delay correction has been considered impactful only 

for high-temporal resolution imaging in conventional dynamic PET but is also essential in 

total-body imaging because the time delay can be 30-40 s in peripheral tissues. In addition, a 

dispersion correction to account for the mixing of the injected radiotracer in the blood may 

also be critical to model the input function for a specific organ14,39.

Corrections for these factors can be pursued by joint estimation which estimates the 

parameters simultaneously with other kinetic parameters during the fitting of TACs. A recent 

example is given by Feng et al.4 in total-body imaging of early FDG kinetics. However, the 

joint estimation method can be computationally expensive. Alternatively, time delay can be 

corrected voxel-wise before parametric imaging40. Such a pre-correction method has the 

advantage of reducing the computational burden. While analytical approaches such as the 

leading-edge method may not achieve the best accuracy, one of our ongoing efforts is to 

explore deep learning for regression to train a model that can predict the time delay and/or 

dispersion of the blood input from the tissue TAC data in combination with the blood input 

function. The labeling data for training can be built from patient data using the joint 

estimation method.
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3.2 Learning-based input function

For tracer kinetic modeling, a plasma input function is what is actually needed, while an 

IDIF represents the tracer activity in the whole blood. The tracer fraction in plasma may be 

pre-determined based on population data, but it is challenging to adapt this to individual 

patients41. In addition, an IDIF may suffer from partial volume and spill-over effects, which 

leads to a potential discrepancy between the IDIF and true blood input function.

Machine learning has the potential to provide a robust and fast prediction of the input 

function from tissue TACs. For example, Kuttner et al. estimated the IDIF from multiple 

blood pool TACs or multiple tissue TACs using a Gaussian Process model and long short-

term memory network42. Instead of requiring manual ROI placements, machine learning can 

also estimate the IDIF directly from dynamic images43.

Metabolite correction is needed for some radiotracers36 and can be done by arterial blood 

sampling (or if the metabolism is slow and the arterial-venous difference is small, venous 

blood sampling may be sufficient) followed by high-performance liquid chromatography 

analysis, which is complex and invasive, and therefore is often mainly used to derive a 

population-based model. Mathematical metabolite correction44-46 is an alternative solution 

that jointly estimates the parent plasma input function during TAC fitting47. However, this 

method requires a complex optimization due to the high nonlinearity of the model and can 

easily get stuck at a local minimum and has a high computational cost. One possible solution 

is to use deep learning to learn an end-to-end solution from the TAC data by using the global 

optimization or arterial sampling result as the training labels. Once trained in this manner, 

the model can be efficient to use.

3.3 Voxel-wise kinetic model selection

In conventional parametric imaging with short AFOV scanners, one kinetic model is 

commonly used for the kinetic parameter estimation for all image voxels. However, the 

physiology varies among organs in the body and is beyond the descriptive ability of a single 

kinetic model. An oversimplified model causes biased quantification, while a too complex 

model leads to unstable parameter estimation. This issue can be addressed by voxel-wise 

model selection which chooses the best of two or more candidate models. As shown in 

Figure 8(B), the parametric image generated by a standard two-tissue irreversible 

compartment model produces artifacts in the ventricular blood pool and blood vessels 

(pointed out by arrows). These artifacts can be suppressed by the appropriate model 

selection, as shown in Figure 8(C).

Conventional methods for model selection use statistical metrics to balance the trade-off 

between the curve-fitting error and the model complexity. Golla et al. compared several 

model selection metrics, including Akaike Information Criterion, Model Selection Criterion, 

and Schwartz Criterion, and found strong agreement across them48. These methods can be 

implemented in a voxel-wise manner but are time-consuming for total-body imaging.

Deep learning may bring an efficient solution to kinetic model selection by formulating 

model selection as a binary or multi-class classification problem. The spatial correlation of 

neighboring voxels can also be incorporated into the learning model. Such an approach has 
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been recently explored by Klyuzhin et al.49 and Fuller el al.50 for detecting transient 

responses in neurotransmitter PET.

3.4 Fast and robust prediction of kinetic parameters

Machine learning has also been applied for directly predicting kinetic parameters from the 

TAC data. A trained model has the potential to generate parametric images very efficiently 

and be robust to noise. Early attempts were demonstrated in 2001 using a shallow neural 

network for 13N-ammonia perfusion parametric imaging by Golish et al.51, in 2011 using a 

support vector machine for kinetic prediction with a shortened dynamic FDG-PET 

protocol52,53, and recently using a deep convolutional neural network for predicting the 

parametric images of macro parameters54.

While learning a direct mapping from the TAC space to kinetic parameter space remains a 

big challenge, it is more feasible to predict high-quality parametric images from low-quality 

parametric images generated by conventional kinetic modeling. For example, parametric 

imaging commonly uses an indirect approach that reconstructs the dynamic images first and 

then performs kinetic modeling voxel by voxel to generate parametric images, as discussed 

in the sections above. In comparison, the ‘direct method’ combines the kinetic model into 

the forward projection model of PET image reconstruction and estimates the parametric 

images directly from the projection data. Direct parametric image reconstruction has been 

demonstrated to outperform the indirect method55. However, direct parametric image 

reconstruction requires a more complex optimization and is time-consuming. Feng et al.56 

and Xie et al.57 used convolutional neural network learning to recover high-quality Patlak 

parametric images (estimated by the direct method) from the Patlak images estimated by the 

indirect method.

3.5. Single-Subject Deep Learning

One general challenge with deep learning is the requirement of collecting a large number of 

patient scans for building the training dataset. This is particularly challenging for deep 

learning for kinetic modeling because each patient has only one blood input function, though 

many tissue TACs are available for building a database. With a limited number of blood 

input functions, the generalization capability of a trained model remains a concern.

Single-subject deep learning may be a feasible alternative solution and is being pursued in 

our group. In this method, a deep learning model is trained on the fly with a low 

computational cost by using a small fraction of voxels labeled with conventional kinetic 

modeling. The remaining voxels are unlabeled but will be predicted efficiently using the 

trained model. One advantage of this learning method is all the training and testing samples 

share the same blood input function. The labeled and unlabeled data can be further 

combined through a semi-supervised learning framework58.

3.6 Voxel-wise motion correction

As the image data size and FOV increase with total-body PET, various types of subject 

motion, involuntary (e.g. respiratory, cardiac, bladder filling) and voluntary (e.g. head 

tilting) are always present in the FOV. For the purposes of total-body parametric imaging, 
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positioning changes in the tissue will be reflected in the individual voxel TACs, which in 

turn may affect kinetic parameter estimation. Motion tracking hardware59,60 and data-driven 

methods 61 such as the centroid of distribution method62-64 can be applied to total-body 

dynamic imaging. Note that total-body motion is generally non-rigid and requires time-

consuming algorithms for motion correction. Deep-learning based solutions may have the 

advantage to efficiently and non-rigidly register respiratory-gated PET images65, and may 

provide improved results with high-quality images generated from total-body PET.

4. Summary

Total-body kinetic modeling on the uEXPLORER system enables quantitative multi-

parametric imaging of the entire body simultaneously. With recent developments in deep 

learning, the remaining challenges of total-body kinetic modeling and parametric imaging 

may be addressed. Many opportunities are emerging for exploiting total-body kinetic 

modeling in various research and clinical applications.
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Key Points

• Total-body PET kinetic modeling on the uEXPLORER PET/CT system 

addresses several factors that serve as barriers to implementation of dynamic 

whole-body PET imaging on conventional PET scanners.

• Total-body kinetic modeling with increased detection sensitivity supports 

multi-parametric imaging which has clinical potential, but also brings several 

technical challenges.

• Deep learning provides multiple opportunities in total-body kinetic modeling, 

including non-invasive input function estimation, kinetic model selection, and 

kinetic parameter estimation. Applications of deep learning can help with 

further improvement of accuracy, robustness, and efficiency.
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Figure 1. 
Flowchart of PET kinetic modeling and parametric imaging. Raw PET projection data in the 

format of sinogram or list-mode are acquired and reconstructed into dynamic images. For 

each image voxel or a region of interest (ROI), a time activity curve (TAC) CT(t)is extracted 

from the dynamic sequence and fitted using a kinetic model and a blood input function to 

estimate kinetic parameters. The input function can be either noninvasively derived from the 

dynamic images or invasively measured by arterial blood sampling or is a population-based 

input function (PBIF). Kinetic modeling can be ROI-based or voxel-based (i.e., parametric 

imaging).
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Figure. 2. 
Two-tissue compartment model for 18F-FDG. FDG is transported from plasma to tissue cells 

with the delivery rate K1 and from tissue to plasma with the rate k2. FDG is phosphorylated 

in cells into FDG 6-phosphate with the rate k3 and the process can be reversed at the rate k4. 

The total activity measured by PET is CT(t) that is a sum of different compartments. vb 

denoting the fractional blood volume and Cwb(t) is FDG activity in the whole-blood.
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Figure 3. 
Illustration of dynamic whole-body imaging on a conventional PET scanner (A) with a 

multi-bed multi-pass strategy (B).
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Figure 4. Total-body dynamic PET imaging using uEXPLORER.
(A) The uEXPLORER total-body PET system. (B) Total-body imaging. (C) Total-body 

dynamic 18F-FDGimages of a healthy subject. The images were reconstructed with no point 

spread function modeling and no post-reconstruction smoothing.
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Figure 5. Total-body IDIF extraction.
(A) Maximum intensity projection (MIP) image of the dynamic, uEXPLORER dataset of a 

healthy volunteer. (B) Example IDIFs derived from different blood pool ROIs. (C) 

Parametric images of FDG net influx rate Ki using different ROIs for IDIF extraction. The 

carotid-extracted IDIF results in much higher Ki estimates than the LV-extracted IDIF.
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Figure 6. 
Total-body parametric images estimated from a 60-minute dynamic 18F-FDG scan of a 

patient with metastatic cancer on the uEXPLORER: (A) SUV, (B) FDG net influx rate Ki 

(C) fractional blood volume vb, and (D) FDG delivery rate K1.
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Figure 7. 
High temporal resolution Patlak plot and parametric imaging. (A) Patlak plot of one-hour 

dynamic FDG data; (B) zoom in of the first 2-minute data; (C) parametric images of the 

slope at three different phases – standard Ki (30-60 minutes), first-pass Ki (20-30s) and 

early-time Ki (1-2 minutes). Shown are the maximum intensity projection images. The unit 

of Ki is mL/min/mL.
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Figure 8. 
Total-body kinetic model selection. (A) The model selection map. (B) Total-body Ki image 

using the two-tissue irreversible model without model selection. (C) Total-body Ki image 

with model selection.
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