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Short-Course Agenda

• 08:00 a.m.  Roger Gunn (Invicro & ICL):
Basics of dynamic PET quantification / Compartment modeling

• 09:30 a.m.  Marc Normandin (MGH):
Graphical and linearized models / Reference-tissue modeling methods

• 11:15 a.m.  Guobao Wang (UCD):
Total-body PET kinetic modeling and parametric imaging / potential applications

• 12:30 p.m.  Q&A
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Disclosure

• University of California Davis has a revenue sharing agreement and a research agreement 
with United Imaging Healthcare (UIH)
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Lecture Outline

I. Dynamic whole-body PET imaging on conventional short scanners

– Whole-body Patlak parametric imaging

II. Total-body PET kinetic modeling and parametric imaging with long scanners

– Benefits of total-body PET for kinetic modeling
– Technical challenges and solution
– Comparison of compartmental modeling with Patlak plot

III. Potential benefits/applications of total-body parametric imaging
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Why Do We Need Whole-Body Imaging?

• Example: 
metastatic cancer

5https://en.wikipedia.org/wiki/Metastasis

metastatic 
lesions



Axial Length of Standard Clinical PET Scanners

• Standard clinical PET scanners commonly have an axial 
length of 15-30 cm

• However, adult human height is about 1.5-2 m
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PET Scanner Year coming 
into the market

Axial length 
(cm) 

GE Discovery 690 2010 15.9

Philips Vereos 2018 16.4

GE Discovery MI (5-ring) 2018 25

Siemens Biograph Vision 2018 26

Canon Cartesion Prime 2019 27

UIH uMI780 2019 30



Implementation for Whole-body PET Imaging

• A whole-body scan by a conventional PET scanner requires multiple bed positions
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Each takes 2-3 minutes, resulting in a total of 10-20 minutes

Images courtesy of Dr. Ramsey Badawi



Dynamic Whole-Body (WB) PET Imaging

8
N Karakatsanis et al. PMB 2013; Rahmim et al EJNMMI 2019

• Dynamic scan of whole body

– Multi-bed positions
– Two or multiple passes
– Mainly late-phase dynamic data

• Blood input function

– By a short dynamic scan (e.g., 6 
minutes) with the bed fixed at the 
chest region 

– or by using a population-based input 
function
Yao et al Med Phys 2020; Wu et al. Med Phys 2021



Dynamic WB PET Imaging: Advantages and Limitations

• Advantages: 

– Implementable on all existing 
commercial PET scanners

• Limitations: 

– Limited temporal resolution
– Lost early-dynamic data for most 

organs

• But it still enables whole-body Patlak
parametric imaging

9

AH Dias et al. EJNMMI 2020



Patlak Graphical Plot

• Model equation (Patlak et al. JCBFM 1983):

• No early-phase data of 𝐶! 𝑡 is needed

• Observations (Zhu et al. TMI 2014):

– A linear inverse problem with two unknown 
kinetic parameters (𝐾", 𝑏)

– In theory, only two time points are needed to 
solve the problem

• High temporal resolution is not necessary
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Relative Patlak Plot

• Observation: Only the integral of the early phase of 𝐶2(𝑡) is needed by the Patlak plot

• Any error in the early-phase integral only introduces a global scaling factor in the the 
Patlak slope image

• Relative Patlak plot

11

#! $
#"($)

= 𝐾"
∫#
$ #" ( )(
#"($)

+ 𝑏, 𝑡 > 𝑡∗

=∫3
$∗ 𝐶2 𝜏 𝑑𝜏 + ∫$∗

$ 𝐶2 𝜏 𝑑𝜏

Y Zuo et al. PMB 2018; Yao et al Med Phys 2020

#! $
#"($)

= 𝐾"4
∫$∗
$ #" ( )(
#"($)

+ 𝑏4, 𝑡 > 𝑡∗



Difference between Standard and Relative Patlak Slopes: Global Scaling
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𝐾" 𝐾"#

Y Zuo et al. PMB 2018

Standard Patlak plot Relative Patlak plot



Patlak Parametric Imaging Became Available on Commercial PET Scanners

• Siemens implemented the whole-body Patlak
parametric imaging 
(Hu et al. IEEE-TRPMS 2020)

• Scan protocol: multibed multi-pass scan 
(Karakatsanis et al. PMB 2013)

• Direct parametric reconstruction with the 
Nested EM algorithm (Wang & Qi PMB 2010)

13https://www.siemens-healthineers.com/molecular-imaging/options-and-upgrades/software-applications/flowmotion-multiparametricpet-suite



Total-Body PET
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(A) Conventional PET scanner
(Axial FOV: 15-30 cm)

(B) EXPLORER
(Axial FOV: 194 cm)

Total-body PET provides unprecedented photon detection sensitivity and 
enables simultaneous dynamic imaging of the entire body

Cherry et al. JNM 2018; Badawi et al. JNM 2019



Long Axial FOV PET Scanners
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UIH uEXPLORER (installed at UC Davis in 
2019)

PennPET EXPLORER

Axial FOV: 112 cm (extended) Axial FOV: 194 cm

Siemens Biograph Vision Quadra

Axial FOV: 106 cm 

Spencer et al. JNM 2021 Karp et al. JNM 2020 Alberts et al. EJNMMI 2021



Benefits of Total-Body PET for Dynamic Imaging and Kinetic Modeling

• Improved sensitivity 

– makes it more robust to estimate 
kinetic parameters

– enables dynamic PET imaging with 
higher temporal resolution 
(Badawi et al JNM 2019; Zhang et al PNAS 2021)

• Total-body coverage

– provides full time course of tracer 
activity for all organs
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Clinical reliability

Probing physiology

Total-body parametric imaging of 
macro- and micro-kinetic parameters

Good image-derived input function



Conventional PET (uMI 780)
8 beds, 2 mins/bed,
50 min p.i.

EXPLORER
20 min scan, 1 bed
82 min p.i

Benefits of Total-Body PET for Dynamic Imaging: 
High Image Quality

Courtesy of Ramsey D. Badawi



Simultaneous Dynamic Imaging of the Entire Body on EXPLORER

Shown are MIP (maximum intensity projection) images. 

30-35 min 55-60 min1-2 min 10-12 mint = 0.5-1 min

Metastatic 
lesions

(Bq/cc)
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Benefits of Total-Body PET for Dynamic Imaging: 
High Temporal Resolution
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17 s 18 s 19 s 20 s 21 s 58-60 min.

Zhang et al. JNM 2020; Badawi et al. JNM 2019



Benefits of Total-Body PET for Kinetic Modeling: 
Extraction of Input Function

• Blood input function is conventionally obtained with invasive 
blood sampling

• For brain imaging, best available image-derived input function 
(IDIF) by conventional PET scanners is from the common carotid 
artery, which however suffers from severe partial volume effect

• With total-body PET, IDIF is available from a large blood pool, 
e.g., the left ventricle

20

A  (22-27s) B (28-33s) C  (34-39s)        D  (0-60s)

Left ventricle 
(LV)

Common 
carotid (CC)

Axial Coverage of 
Standard PET Scanners
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Image-Derived Input Functions (IDIFs) in Total-Body Dynamic PET
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Example of Brain Parametric Imaging

22E Li et al. 2019 SNMMI

with LV IDIF with CC IDIF 0.06
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Benefits of Total-Body PET for Dynamic Imaging : 
Capturing the Full Time Course of Tracer Activity in All Organs
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Brain

Lung

Liver

Tumor

Myocardium

Spleen



Total-Body Patlak Parametric Imaging on EXPLORER
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Patlak Ki

Zhang et al. JNM 2020



Benefits of Total-Body PET for Kinetic Modeling: 
Parametric Imaging with Compartmental Models

• Compartmental model

• Differential equations
d
d𝑡

𝐶! 𝑡
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• Total activity that is measured by PET is

𝐶( 𝑡 = 1 − 𝑣) [𝐶! 𝑡 + 𝐶" 𝑡 ] +𝑣) 𝐶)(𝑡)

25Sokoloff et al. 1977; Phelps et al. 1979; Huang et al. 1980; Gunn et al 2002. Online book chapter: Morris et al. 2004; Carson 2005 

18F-FDG in 
plasma: Cp(t)

Free 18F-FDG in 
tissue: Cf(t)

18F-FDG-6P in 
cells: Cm(t)

K1

k2

k3

k4

𝐶$ 𝑡



Kinetic Parametric Estimation by Full Time Activity Curve (TAC) Fitting

• Micro-kinetic parameters (e.g., K1, k2, …) are estimated from TAC fitting

• Macro kinetic parameters can be calculated, e.g., for FDG:

Net influx rate 𝐾i =
6&7'
7(87'

;  Initial volume of distribution 𝑉3 =
6&7(

(7(87')(

26

Blood Input Total Tissue OutputKinetic Model 𝐶$ 𝑡



Challenges of Total-Body Kinetic Modeling and Parametric Imaging

• Time delay and 
dispersion correction

• Modeling of dual blood 
supplies (in liver, lung)

• Parent fraction correction

• Metabolite correction
27

Blood Input Function Tissue TACs and FittingKinetic Model

• Model selection

• Identifiability

• …

• Huge dataset

• Motion

• Local minimum

• …
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Time Delay of the Blood Input Function

(B) actual arrival in a tissue

time delay
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(A) IDIF extracted in left ventricle

Iida et al. 1986, 1988, 2000; E. Meyer et al. 1989; Lammertsma et al. 1990; Feng et al. 2020



Commonly Neglected in Parametric Imaging

• 𝐾" estimation is more dominated by the late phase instead of early phase of a dynamic 
scan

• Within a limited axial FOV of 15 cm of conventional PET, time delay can be just a few 
seconds

• Temporal resolution of dynamic PET was limited (e.g., 10-40 s/frame)

• Mainly considered to be important for estimation of fast kinetics (e.g., cerebral blood flow 
imaging using 15O-water)

29Iida et al. 1986, 1988, 2000; E. Meyer et al. 1989; Lammertsma et al. 1990



Importance for Total-Body Kinetic Modeling

• Time delay in a tissue distant from the left 
ventricle can be up to 50 seconds

• Metastatic lesions spread to distant organs, 
which can be far away from the blood pool 
where a blood input function is extracted

• May significantly affect the estimation of 𝑣9, 
𝐾: and 𝐾"

30

Example of time delay map estimated 
from a 18F-FDG patient scan
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Time-Delay Correction by Joint Estimation

• Model TAC without time delay

𝐶( 𝑡 = 1 − 𝑣) IRF 𝑡; 𝜿 ⊗ 𝐶' 𝑡 + 𝑣)𝐶) 𝑡

• Model TAC with time delay correction

𝐶( 𝑡 = 1 − 𝑣) IRF 𝑡; 𝜿 ⊗ 𝐶' 𝑡 − 𝑡* + 𝑣)𝐶) 𝑡 − 𝑡*

• 𝜽 = 𝜿+, 𝑣), 𝑡* + is jointly estimated via nonlinear least-square fitting:

8𝜽 = argmin
𝜽
𝑅𝑆𝑆 𝜽 , 𝑅𝑆𝑆 𝜽 =A

-.&

/
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#
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Impulse response function; 
𝜿 = 𝐾%, 𝑘&, 𝑘' (



Example of Fitting a Lesion TAC

32

A. no time-delay correction B. with time-delay correction



Time-Delay Correction on Total-Body Parametric Imaging
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w/o with w/o with

mL/cm3 mL/min/cm3

Fractional blood volume vb FDG delivery rate K1



Time-Delay Correction (TDC) Also Impacts on FDG Ki
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Estimated time delay Ki (without TDC) Ki (with TDC)
+50

-10

(s)

+30

+10

0.0180.009



Impact of Time Delay Correction Correlates with Blood Volume Fraction

35

Results from 19 lesions 
from 5 patients with 
metastatic genitourinary 
cancer



Why Time-delay Correction May Impact Ki Estimation?

36

𝐶( 𝑡 = 1 − 𝑣) IRF 𝑡; 𝜿 ⊗ 𝐶' 𝑡 − 𝑡* + 𝑣)𝐶) 𝑡 − 𝑡*

B. With time delay estimationA. No time delay estimation

𝐶01 𝑡



Total-Body Model Selection

• Conventionally a fixed model is commonly used in organ-specific parametric imaging, e.g.,

– Brain
– Myocardium

• Total-body parametric imaging

– Many different organs
– Each may follow a different compartmental model

37



Example of Candidate Compartmental Models
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Cp(t) Cf(t) Cm(t)
K1

k2

k3
A. 2T

B. 1T Cp(t) Ct(t)
K1

k2

C. 0T (blood voxels)Cp(t)



Which Model Is the Best?

• Similar fits, but very different Ki results

39

0T fit: 𝐾"=0.00 2T fit: 𝐾"=0.02



Akaike Information Criteria (AIC)

• Definition

AIC = 𝑀 ln >??
@ + 2𝑛

where RSS denotes the residual sum of squares

𝑅𝑆𝑆 =;
AB:

@
𝑤A =𝐶!(𝑡C) − 𝐶! 𝑡A

D

with M the number of frames and n the number of unknown kinetic parameters.

40

Goodness of fit

Penalty on a more 
complex model



AIC for Small Sample Size

• Correction for small sample size:

AICc = AIC +
2𝑛 𝑛 + 1
𝑀 − 𝑛 − 1

• AIC includes n, thus the first-order estimate of the information loss

• AICc includes n2 and is a second-order estimate

• Lower value of AIC (or AICc) indicates a better fit
41

Extra penalty to 
avoid overfitting



Test for Fitting a Blood TAC
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0T fit: K"=0.002T fit: K"=0.02



Impact of Model Selection on Ki Imaging of Lesions
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0.02

0

(mL/min/mL)

No model selection 
(2Ti)

With model selection
(0T, 1T, 2Ti)

0.02

0
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Model selection map
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Impact of Model Selection on Myocardial Ki Imaging

44

No model selection

(mL/min/cm3)

With model selection



Example of Total-Body PET Multiparametric Imaging Using Compartmental 
Modeling (CM)

FDG net influx rate FDG delivery rate 

K1 V0 mL/cm3mL/min/cm3Ki mL/min/cm3

Fractional blood volume 

vb mL/cm3

Volume of distribution

45



𝐶! 𝑡 = 1 − 𝑣9 IRF 𝑡; 𝜿 ⊗ 𝐶2 𝑡 + 𝑣9𝐶F9 𝑡

Comparison of 2T CM with Patlak Plot

• Pros

– Better modeling of the blood component (𝑣9)

– The Patlak slope is not exactly equal to 𝐾" =
6&7'
7(87'

of the 2T model, but (1 − 𝑣9)𝐾"
– Allowing parametric imaging of micro-kinetic parameters (e.g., 𝐾:, 𝑣9)

• Cons

– Computationally less efficient
– Additional corrections are needed in order to explore the benefits 46

Irreversible 2T CM
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When Similar and When Different Between Compartmental Modeling and 
Patlak Plot?

47

Similar

Patlak 2Ti
(ml/min/ml) (ml/min/ml)

Different

Patlak 2Ti
(ml/min/ml) (ml/min/ml)



The Relationship Depends on Vascular Fraction

• Compartment modeling allows separate estimation of Ki and vb

• Patlak slope ≈ (1-vb)Ki, which does not make the separation

• The difference becomes nonnegligible if vb is large

48

2Ti Ki 2Ti vb(mL/min/cm3) (ml/cm3) (1-vb)Ki (mL/min/cm3)Patlak Slope (mL/min/cm3)



Patlak Underestimation Correlates with Blood Volume

49

Patlak plot underestimates Ki but highly 
correlates with it

The underestimation is increased as 
blood volume increases

19 lesions from 5 patients with genitourinary cancer

r = -0.85
P < 0.0001

r = 0.97
P < 0.0001



Potential Benefits of Total-Body Multiparametric Imaging

1. Improved lesion contrast

2. Exploring micro kinetic parameters (e.g., K1) for 
multiparametric imaging

3. Multiorgan quantification in systemic disease

50

Ki K1



Benefit 1: Parametric Image of Ki Can Improve Lesion Contrast

• FDG Ki can clean background signal in the liver and blood pool

51

SUV Ki



Results from Whole-body Patlak Imaging on Conventional PET Scanners

Improved tumor-to-background 
ratio (TBR)

52AH Dias et al. EJNMMI 2020



Initial Results from Total-Body Parametric Imaging with Compartmental 
Modeling on EXPLORER
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Results from 19 lesions from 5 patients with metastatic cancer

P < 0.0001



Example of Liver Lesions
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SUV

CR=1.6

COV=8%

FDG influx rate Ki

CR=5.8

COV=13%



Example of Abdominal Lesions
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0

0.025

FDG KiSUV

0

5

0

0.025
g/mL mL/min/cm3

Peritoneal mass 

para-aortic lesion 

Contrast-enhanced CT



Benefit 2: Exploring Micro-kinetic Parameters for Multiparametric Imaging

• SUV and Ki characterize glucose metabolism

• FDG delivery rate K1 generally reflects a mix of blood 
flow and glucose transport

• Many potential applications of FDG K1:

– Serve as a surrogate of blood flow
– Independent imaging biomarker
– Create lesion contrast

56

(mL/min/cm3)



Cancer: FDG K1 May Highly Correlate with Tumor Blood Flow

• Due to generally high extraction fraction 
of 18F-FDG in tumors

57

FDG flow: Mullani et al, JNM 2008; Tseng et al JNM 2004; 
Flow-metabolism mismatch: Komar et al CCR 2009; Mankoff et al CCR 2009  

• Enabling single-tracer imaging of 
tumor flow-metabolism mismatch

Mankoff et al CCR 2009 



Heart: Measuring Myocardial Blood Flow (MBF) Using FDG K1

• FDG K1 is closely associated with 
blood flow in the myocardium

58

• Correlation of FDG-derived MBF with Rb 
MBF after the nonlinearity correction

Zuo et. al., Phys Med Biol 2021; Zuo et al. IEEE TRPMS 2020

Pilot study using Rb-82 PET on a 
conventional scanner



Liver: FDG K1 May Be a Potential Biomarker of Liver Inflammation

• Decreased liver FDG K1 is associated with increased liver inflammation

59
Sarkar et al CGH 2021; Sarkar et al.  AJR 2019; Zuo et al. PMB 2019; Wang et al. PMB 2018; 

Liver inflammation grade

1.8

0.0

mL/min/cm3

Low grade inflammation High grade inflammationMedium grade inflammation

Liver FDG K1 Images



Brain/Skull: FDG K1 Has Potential to Better Detect Tumors
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SUV
8

0

g/ml
Ki

0.02

0

ml/min/ml
K1 K1+CT

0.6

0

ml/min/ml

Wang et al. unpublished EXPLORER data



Benefit 3: Enabling Multi-Organ Evaluation in Systemic Disease

• Simultaneous evaluation of 
myocardium in cancer patients?

• Problem: 30-40% of standard 
oncological FDG-PET scans do not 
show visible myocardium

• Parametric imaging can help

61

SUV (60 min. p.i.)



Simultaneous Visualization of Myocardium by Parametric Imaging
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Example 
A

Example 
B

SUV
8

0

(g/mL)

8

0

(g/mL)

Ki

0.015

0

(g/min/mL)

0.015

0

(g/min/mL)



Allowing Evaluation of Perfusion-Metabolism Coupling/Mismatch
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Example 
A

Example 
B

Ki (metabolism)
0.015

0

(g/min/mL)

0.015

0

(g/min/mL)

K1 (perfusion/transport)
1.5

0

(g/min/mL)

1.5

0

(g/min/mL)



Putting All Puzzles Together

Single-tracer (18F-FDG) Multiorgan Multiparametric Evaluation by EXPLORER

64

Multi Organs

• Myocardium

• Liver

• Lung

• Brain

• Bone marrow

• Spleen

• Kidney ...

Multiparametric Imaging

• Glucose metabolism

• Glucose transport / perfusion

• and potentially more



Advanced Topics in Total-Body Modeling and Analysis

• Metabolite correction using total-body compartmental modeling

• Motion correction for total-body parametric imaging

• High-temporal resolution (e.g., 1s/frame) kinetic modeling

• 4D parametric imaging with cardiac/respiratory modulation

• Total-body dual-tracer and multi-tracer dynamic imaging

• Total-body organ network analysis and connectomes

• and many more …
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Thank you for your attention!

Questions?
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